Segmentation and Parcelisation of Newborn Brain MRI using Mathematical Morphology

Radoslaw Lisowski, Michel Kocher, Francois Lazeyras

CIBM - HES
The CIBM

UNIL/EPFL/UNIGE Preclinical SCIENCES e.g. CIG (Genomics), CMU

CIBM

1 CENTER
1 Director (CEO)
7 Cores
9 Professors

HUG/UNIGE

Clinical Departments
Radiology
Neurology
Pediatrics
Psychiatry

Animal PET + Cyclotron
Osman Ratib

Neurology, Medicine, etc.

EEG mapping
Christoph Michel

Human 3T
Clinical Research (50%)
Francois Lazeyras

Signal processing Satellite

CHUV/UNIL

Clinical Departments
Radiology
Psychiatry
Medicine
Neurology
Neuropsychology
Neurosurgery

EEG mapping satellite
(Micah Murray)

Human 3T
Clinical Research (50%)
Reto Meuli

Signal processing Satellite

Image Processing Core
Michael Unser (JP Thiran)
Outline

1. Description of the problem
2. Theoretical background
3. Process
 1. Noise estimation and noise reduction
 2. Intracranial Volume
 3. Parcellisation: left right hemisphere and cerebelum-brainstem
 4. Segmentation of White matter, Gray matter, CSF
4. Results
5. Discussion
1. Where do we come from?

- 30 weeks T1 and T2
- 40 weeks T1 and T2
1. Where do we want to go?

- CSF
- Gray matter
- White matter
- Brainstem
- Cerebellum
1. Description of the problem

- The goal is to segment
 - Structures:
 - Intracranial volume, left, right hemisphere, Cerebellum and brain stem
 - Tissues
 - White gray matter, CSF
- The difficulties are
 - White matter vs gray matter contrast to noise ratio.
 - Low spatial resolution.
 - Partial volume effect.
 - Coregistration T1 and T2.
 - Myelination ongoing process.
 - Large overlaps in intensity-based on different tissues.
2. K-means algorithm
2. Watershed algorithm
2. Mahalanobis distance

Sample data (red), Observation (green), $\text{Dist}_{\text{Euclid}} = [1.4; 2; 2.2; 2.8]$, $\text{Dist}_{\text{Mahalanobis}} = [0.65; 18; 20; 1.4]$
3.1 Noise filtering

EPSF Filter (anisotropic heat diffusion)
3.1 Noise filtering

T2 initial image

K-means (4 clusters)

Homogeneous regions = union of the eroded clusters

Diffusion flow

Kappa

Gradient
3.1 Noise filtering

Distribution of σ_{noise} within each region

Kappa = median (σ_{noise})
3.1 Noise filtering
3.2 Intracranial Volume (watershed)

Marker function

T2 image

gradient

Viscous closing = segm function

WS and cropping
3.3 Left-Right Hemispheres and Cerebelum-Brainstem

Markers function: 3 most significant lobes

WM and GM

Distance transform

K-mean (3 clusters)

CSF

Segmentation function: Viscous closing-dilation of CSF and background
A Little break?

- Up to now, we have
 - Filtered the data
 - Got the intracranial volume
 - Parcellised the intracranial volume into left, right hemisphere and cerebellum (anatomic structures)

- From now, we do
 - Get rid of the cerebellum and brainstem
 - Identify gray, white matter and CSF for each hemisphere (tissues)
3.4 Region growing

Seed computation \(\{X_i\} \) \((\text{internal CSF, external CSF, WM}) \)
Attribute definition \((K = \text{Curvature}, C = \text{Connexity}) \)
Loop

Compute \(\{x_i\} = \text{boundaries of } \{X_i\} \)
Compute limitation parameters \(K(x_i), C(x_i) \)
Compute minimisation parameter \((\text{Mahalanobis}) M(x_i) \)
if \(M(x_i) = \text{min } \{M(x_i)\} \& K(x_i) < K_{Th} \& C(x_i) < C_{Th} \)
\hspace{1cm} \{X_i\} = \{X_i\} U x_i
end
if stability
\hspace{1cm} \text{relax the curvature constraint by increasing } K_{th}
end
end
3.4 Seed definition

WM seed: Most significant object after morphological opening of WM cluster

External CSF seed: Intersection of the IC internal gradient with CSF cluster

Internal CSF seed: Intersection of the dilated center of gravity with CSF cluster

K-means (3 clusters in left-right hemispheres)
3.4 Segmentation function

3 segmentation functions (Mahalanobis)

K-means (3 clusters: CSF, WM, GM) references regions

T1, T2

GM
CSF
WM
3.4 Parametric control:
Connectivity and curvature

Connectivity
\[c(x) = \sum N(x) < \text{Th1} \]

Curvature
\[k(x) < \text{Th2} \]
4. 3D Visualisation

Intracranial Volume

Gray Mater

White Mater

Visualisation on MATLAB
color: curvature value
5. Discussion

1. Strong points
 - Noise estimation for anisotropic diffusion
 - Intracranial volume segmentation
 - Viscosity concept with varying radius of the structuring element
 - Curvature and connectivity as constraints for the region growing
 - Mahalanobis distance to integrate T1 and T2 modalities

2. Weak points
 - The parcellisation is critical on cerebrum and cerebellum frontier
 - Myelination is a problem, varying contrast due to infant cerebral development
 - T1 – T2 coregistration

3. Technical
 - Matlab implementation
 - Simulation time from 30 to 60 minutes for a 256 by 256 by 256 voxels stack